Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell ; 32(7): 2383-2401, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32358071

RESUMO

The tradeoff between protein and oil storage in oilseed crops has been tested here in oilseed rape (Brassica napus) by analyzing the effect of suppressing key genes encoding protein storage products (napin and cruciferin). The phenotypic outcomes were assessed using NMR and mass spectrometry imaging, microscopy, transcriptomics, proteomics, metabolomics, lipidomics, immunological assays, and flux balance analysis. Surprisingly, the profile of storage products was only moderately changed in RNA interference transgenics. However, embryonic cells had undergone remarkable architectural rearrangements. The suppression of storage proteins led to the elaboration of membrane stacks enriched with oleosin (sixfold higher protein abundance) and novel endoplasmic reticulum morphology. Protein rebalancing and amino acid metabolism were focal points of the metabolic adjustments to maintain embryonic carbon/nitrogen homeostasis. Flux balance analysis indicated a rather minor additional demand for cofactors (ATP and NADPH). Thus, cellular plasticity in seeds protects against perturbations to its storage capabilities and, hence, contributes materially to homeostasis. This study provides mechanistic insights into the intriguing link between lipid and protein storage, which have implications for biotechnological strategies directed at improving oilseed crops.


Assuntos
Brassica napus/citologia , Brassica napus/metabolismo , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/citologia , Sementes/metabolismo , Albuminas 2S de Plantas/genética , Albuminas 2S de Plantas/metabolismo , Aminoácidos/metabolismo , Antígenos de Plantas/genética , Antígenos de Plantas/metabolismo , Brassica napus/genética , Carbono/metabolismo , Regulação da Expressão Gênica de Plantas , Espectroscopia de Ressonância Magnética , Lipídeos de Membrana/genética , Lipídeos de Membrana/metabolismo , Nitrogênio/metabolismo , Células Vegetais , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA , Proteínas de Armazenamento de Sementes/genética
2.
J Exp Bot ; 66(20): 6497-506, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26195728

RESUMO

DGAT1 enzymes (acyl-CoA:diacylglycerol acyltransferase 1, EC 2.3.1.20) catalyse the formation of triacylglycerols (TAGs), the most abundant lipids in vegetable oils. Thorough understanding of the enzymology of oil accumulation is critical to the goal of modifying oilseeds for improved vegetable oil production. Four isoforms of BnDGAT1, the final and rate-limiting step in triacylglycerol synthesis, were characterized from Brassica napus, one of the world's most important oilseed crops. Transcriptional profiling of developing B. napus seeds indicated two genes, BnDGAT1-1 and BnDGAT1-2, with high expression and two, BnDGAT1-3 and BnDGAT1-4, with low expression. The activities of each BnDGAT1 isozyme were characterized following expression in a strain of yeast deficient in TAG synthesis. TAG from B. napus seeds contain only 10% palmitic acid (16:0) at the sn-3 position, so it was surprising that all four BnDGAT1 isozymes exhibited strong (4- to 7-fold) specificity for 16:0 over oleic acid (18:1) as the acyl-CoA substrate. However, the ratio of 18:1-CoA to 16:0-CoA in B. napus seeds during the peak period of TAG synthesis is 3:1. When substrate selectivity assays were conducted with 18:1-CoA and 16:0-CoA in a 3:1 ratio, the four isozymes incorporated 18:1 in amounts 2- to 5-fold higher than 16:0. This strong sensitivity of the BnDGAT1 isozymes to the relative concentrations of acyl-CoA substrates substantially explains the observed fatty acid composition of B. napus seed oil. Understanding these enzymes that are critical for triacylglycerol synthesis will facilitate genetic and biotechnological manipulations to improve this oilseed crop.


Assuntos
Brassica napus/genética , Diacilglicerol O-Aciltransferase/genética , Sementes/metabolismo , Acil Coenzima A/metabolismo , Brassica napus/metabolismo , Diacilglicerol O-Aciltransferase/metabolismo , Diglicerídeos/metabolismo , Ácidos Graxos/metabolismo , Óleos de Plantas/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Saccharomyces cerevisiae/genética , Especificidade por Substrato
3.
Physiol Plant ; 113(2): 176-184, 2001 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12060294

RESUMO

A genomic clone encoding a thiohydroximate S-glucosyltransferase (S-GT) was isolated from Brassica napus by library screening with probes generated by PCR using degenerated primers. Its corresponding cDNA was amplified by rapid amplification of cDNA ends (RACE) PCR and also cloned by cDNA library screening. The genomic clone was 5 896 bp long and contained a 173-bp intron. At least two copies of the S-GT gene were present in B. napus. The full-length cDNA clone was 1.5 kb long and contained an open reading frame encoding a 51-kDa polypeptide. The deduced amino acid sequence shared a significant degree of homology with other glucosyltransferases characterized in other species, including a highly conserved motif within this family of enzymes corresponding to the glucose-binding domain. The recombinant protein was expressed in Escherichia coli, and the enzyme activity was tested by a biochemical assay based on the measure of glucose incorporation. The high thiohydroximate S-GT activity detected from the recombinant protein confirmed that this clone was indeed a S-glucosyltransferase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...